乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且乙個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。乙個演算法中的語句執行次數稱為語句頻度或時間頻度。記為t(n)。
一般情況下,演算法的基本操作重複執行的次數是模組n的某乙個函式f(n),因此,演算法的時間複雜度記做:t(n)=o(f(n))。隨著模組n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間複雜度越低,演算法的效率越高。在計算時間複雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出t(n)的同數量級(它的同數量級有以下:1,log2n ,n ,nlog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若t(n)/f(n)求極限可得到一常數c,則時間複雜度t(n)=o(f(n))。
按數量級遞增排列,常見的時間複雜度有:常數階o(1),對數階o(log2n),線性階o(n),線性對數階o(nlog2n),平方階o(n^2),立方階o(n^3),…,k次方階o(n^k), 指數階o(2^n)。隨著問題規模n的不斷增大,上述時間複雜度不斷增大,演算法的執行效率越低。
舉幾個具體的例子:
1. for i:=1 to 100 do for j:=1 to 100 do s[i,j]:=0;
執行次數100*100次,時間複雜度o(1)
2. for i:=1 to n do for j:=1 to 200 do s[i,j]:=0;
執行次數**n***200次,時間複雜度o(n)
2. for i:=1 to n do for j:=1 to n div 2 do s[i,j]:=0;
執行次數n*n/2次,時間複雜度o(n^2)
3. for i:=1 to n do for j:=1 to n-1 do for k:=1 to n-2 do s[i,j,k]:=0;
執行次數n*(n-1)*(n-2)次,時間複雜度o(n^3)
4. for i:=1 to n do
begin
for j:=1 to n do s[i,j,0]:=0;
for j:=1 to n do for k:=1 to n do s[i,j,k]:=1;
end;
執行次數n*(n+n*****n)次,時間複雜度o(n^3)
dfs時間複雜度 時間複雜度 空間複雜度
時間複雜度的數學證明方法相對比較複雜,通常在工程實際中,會分析就好。注意 只看最高複雜度的運算 int for for for for int遞迴如何分析時間複雜度?常數係數可以忽略,在分析時不用考慮,只要說以上術語即可。主定理 master throrem 上述第四種是歸併排序,所有排序演算法,最...
時間複雜度 空間複雜度
時間複雜度 在電腦科學中,演算法的時間複雜度是乙個函式,它定性描述了該演算法的執行時間。這是乙個關於代表演算法輸入值的字串 的長度的函式。時間複雜度常用大o符號 表述,不包括這個函式的低階項和首項係數。計算時間複雜度的方法 1 只保留高階項,低階項直接丟棄 2 係數不要 3 執行次數是常數是為o 1...
時間複雜度 空間複雜度
演算法複雜度分為時間複雜度和空間複雜度。其作用 時間複雜度是指執行演算法所需要的計算工作量 而空間複雜度是指執行這個演算法所需要的記憶體空間。一 時間複雜度 時間頻度 乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道...