機器學習中有兩類的大問題,乙個是分類,乙個是聚類。
在我們的生活中,我們常常沒有過多的去區分這兩個概念,覺得聚類就是分類,分類也差不多就是聚類,下面,我們就具體來研究下分類與聚類之間在資料探勘中本質的區別。
分類有如下幾種說法,但表達的意思是相同的。
分類演算法的侷限
分類作為一種監督學習方法,要求必須事先明確知道各個類別的資訊,並且斷言所有待分類項都有乙個類別與之對應。但是很多時候上述條件得不到滿足,尤其是在處理海量資料的時候,如果通過預處理使得資料滿足分類
演算法的要求,則代價非常大,這時候可以考慮使用聚類演算法。
聚類的相關的一些概念如下
機器學習中分類與聚類的本質區別
機器學習中有兩類的大問題,乙個是分類,乙個是聚類。在我們的生活中,我們常常沒有過多的去區分這兩個概念,覺得聚類就是分類,分類也差不多就是聚類,下面,我們就具體來研究下分類與聚類之間在資料探勘中本質的區別。分類有如下幾種說法,但表達的意思是相同的。分類問題是用於將事物打上乙個標籤,通常結果為離散值。例...
分類與聚類的本質區別
機器學習中有常見的兩類大問題,乙個是分類,乙個是聚類。聚類分析是研究如何在沒有訓練的條件下把樣本劃分為若干類。在分類中,已知存在哪些類,即對於目標資料庫中存在哪些類是知道的,要做的就是將每一條記錄分別屬於哪一類標記出來。聚類需要解決的問題是將已給定的若干無標記的模式聚集起來使之成為有意義的聚類,聚類...
機器學習中分類和聚類的區別
在機器學習中有兩種常見的任務 分類 classification 和聚類 clustering 在初學機器學習時,對這兩個概念的理解容易混淆,隨著學習的深入,對這兩個概念有了基本的認識,現總結如下 1.分類 屬於監督學習的範疇,根據一些給定的已知類別的樣本,使它能夠對未知類別的樣本進行分類,要求必須...