在無向圖中,如果從頂點vi到頂點vj有路徑,則稱vi和vj連通。如果圖中任意兩個頂點之間都連通,則稱該圖為連通圖,
否則,稱該圖為非連通圖,則其中的極大連通子圖稱為連通分量,這裡所謂的極大是指子圖中包含的頂點個數極大。
例如:乙個無向圖有5個頂點,1-3-5是連通的,2是連通的,4是連通的,則這個無向圖有3個連通分量。
第一行是乙個整數t,表示有t組測試樣例(0 < t <= 50)。每個測試樣例開始一行包括兩個整數n,m,(0 < n <= 20,0 <= m <= 200)
分別代表n個頂點,和m條邊。下面的m行,每行有兩個整數u,v,頂點u和頂點v相連。
每行乙個整數,連通分量個數。
23 11 2
3 23 2
1 2
2提示1
#include#includeusing namespace std;
int pre[1000];
int m,n,u,v;
int find(int x)//查詢r的根節點
return r;
}void join(int x,int y)
int main()
int ant=0;
for(int i=1;i<=n;i++)
if(pre[i]==i) //最後開始遍歷所有的點,點的上級是他本身的證明沒有被聯通,需要建路
ant++;//數量+1
cout<
資料結構實驗 連通分量個數
在無向圖中,如果從頂點vi到頂點vj有路徑,則稱vi和vj連通。如果圖中任意兩個頂點之間都連通,則稱該圖為連通圖,否則,稱該圖為非連通圖,則其中的極大連通子圖稱為連通分量,這裡所謂的極大是指子圖中包含的頂點個數極大。例如 乙個無向圖有5個頂點,1 3 5是連通的,2是連通的,4是連通的,則這個無向圖...
資料結構實驗 連通分量個數
在無向圖中,如果從頂點vi到頂點vj有路徑,則稱vi和vj連通。如果圖中任意兩個頂點之間都連通,則稱該圖為連通圖,否則,稱該圖為非連通圖,則其中的極大連通子圖稱為連通分量,這裡所謂的極大是指子圖中包含的頂點個數極大。例如 乙個無向圖有5個頂點,1 3 5是連通的,2是連通的,4是連通的,則這個無向圖...
資料結構實驗 連通分量個數
time limit 1000ms memory limit 65536k 有疑問?點這裡 在無向圖中,如果從頂點vi到頂點vj有路徑,則稱vi和vj連通。如果圖中任意兩個頂點之間都連通,則稱該圖為連通圖,否則,稱該圖為非連通圖,則其中的極大連通子圖稱為連通分量,這裡所謂的極大是指子圖中包含的頂點個...