動態規劃 Problem Q

2021-07-11 18:49:57 字數 580 閱讀 3990

動態規劃—problem q

題意 收集骨頭。乙個人有乙個揹包,揹包容積是v,不同的骨頭有不同的體積和價值,求收集到骨頭價值的最大值。

解題思路

揹包問題。剖析下問題,「將前i件物品放入容量為v的揹包中」這個子問題,若只考慮第i件物品的策略(放或不放),那麼就可以轉化為乙個只牽扯前i-1件物品的問題。如果不放第i件物品,那麼問題就轉化為「前i-1件物品放入容量為v的揹包中」,價值為dp[i-1][v];如果放第i件物品,那麼問題就轉化為「前i-1件物品放入剩下的容量為v-c[i]的揹包中」,此時能獲得的最大價值就是dp[i-1][v-c[i]]再加上通過放入第i件物品獲得的價值w[i]。

綜上分析,狀態轉移方程為:dp[j]=max(dp[j],dp[j-v[i]]+w[i]).

感想 額,題目夠可以。

ac**

#include

#include

using

namespace

std;

#define max 1010

int main()

cout

0;}

動態規劃 什麼是動態規劃?

先來看看 資訊學奧賽一本通第5版 是怎麼說的 動態規劃程式設計是對解最優化問題的一種途徑 一種方法,而不是一種特殊演算法。不像前面所述的那些搜尋或數值計算那樣,具有乙個標準的數學表示式和明確清晰的解題方法。動態規劃程式設計往往是針對一種最優化問題,由於各種問題的性質不同,確定最優解的條件也互不相同,...

mysql動態規劃 動態規劃

動態規劃 能夠動態規劃的問題具有以下特點 可分解成規模更小的子問題 子問題的結果可復用 關鍵是要理解狀態轉移方程的含義就好啦!數字三角形 問題描述 在數字三角形尋找從頂到底的路徑,使得路徑經過的數字之和最大。規定每一步只能往左下或右下走,求出最大路徑和。遞迴解法 include include us...

《動態規劃》 ACM 動態規劃例題詳解

描述 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 圖1 圖1給出了乙個數字三角形。從三角形的頂部到底部有很多條不同的路徑。對於每條路徑,把路徑上面的數加起來可以得到乙個和,你的任務就是找到最大的和。注意 路徑上的每一步只能從乙個數走到下一層上和它最近的左邊的那個數或者右邊的那個數。輸...