機器學習20160412

2021-07-11 04:06:26 字數 661 閱讀 4334

入門級演算法:梯度下降法(gd)

batch gradient descent(bgd) and stochastic gradient descent(sgd)

當使用大量樣本時,sgd不用迴圈所有樣本吧?

在page4中,對於stochastic gradient descent的「stochastic」,理解的不正確。

那麼,該怎樣理解「stochastic」呢?

難道,從統計的角度看,【在大量樣本情況下,對單個樣本求梯度,然後迴圈每個樣本,估計出的引數值就是近似滿足要求的。】,會有這樣的結論嗎?怎樣證明。

機器學習 初識機器學習

1.什麼是機器學習?對於機器學習到現在都還沒有統一的定義,但是,通過乙個例子和較權威的定義來理解機器學習,最後附上我個人對機器學習的理解 2.監督學習 1 監督學習基本思想 我們資料集中的每個樣本都有相應的 正確答案 即每個樣本都是真實值,再根據這些樣本作出 舉乙個房價預售的例子來說明 eg 下面圖...

機器學習 機器學習目錄

注 後期有時間的話會對每乙個演算法進行講解。1 普通線性回歸 2 廣義線性模型 3 邏輯回歸 4 線性判定分析1 決策樹基本原理與構建 2 cart演算法 3 回歸決策樹 4 分類決策樹1 貝葉斯定理與樸素貝葉斯 2 高斯貝葉斯分類器 3 多項式貝葉斯分類器 4 伯努利貝葉斯分類器 5 遞增式學習1...

機器學習一 機器學習概要

回歸 是指把實函式在樣本點附近加以近似的有監督的模式識別問題。對乙個或多個自變數和因變數之間關係進行建模,求解的一種統計方法。分類 是指對於指定的模式進行識別的有監督的模式識別問題。異常檢測 是指尋找輸入樣本ni 1i 1 n中所包含的異常資料的問題。常採用密度估計的方法 正常資料為靠近密度中心的資...