選擇支援向量機 SVM 核函式

2021-07-10 15:53:11 字數 376 閱讀 8929

svm核函式通常有四種:

1. linear

2. polynomial

3. gaussian (rbf)

4. sigmoid/logistic

不知為何,rbf最常用

ok,很顯然,兩種核函式都能讓我們接受,具有很強的說服力。這時候通常選擇簡單的那個,即線性核函式,因為不論是引數個數上還是複雜度上,還是對映計算上,線性核函式比rbf強,另外rbf可能會導致過擬合。

好吧,似乎上面說的對linear很有好感。但事實上,如果要一句話總結如何選擇核函式,那就是—dataset。毫無疑問,如果是下圖的資料,再用linear核函式,顯然是不行的。

下面是rbf核函式的結果,很精妙!

告一段落

支援向量機(SVM)

簡介 術語 支援向量機 svm 是乙個類分類器,正式的定義是乙個能夠將不同類樣本在樣本空間分隔的超平面。換句話說,給定一些標記 label 好的訓練樣本 監督式學習 svm演算法輸出乙個最優化的分隔超平面。首先我們假定有乙個未知的欲分類的集合,可以進行分割,但是我們不知道分割的函式 超平面,也叫真實...

支援向量機SVM

支援向量機svm support vector machine 是機器學習領域的乙個有監督的學習模型。一 簡介 支援向量機建立在統計學習理論的基礎之上。統計學習理論 statistical learning theory簡稱slt 是一種處理小樣本的統計理論 為研究有限樣本情況下的統計模式識別和更廣...

SVM支援向量機

在機器學習領域,很多時候會用到分類的一些演算法,例如knn,貝葉斯。我們可以把分類的樣本簡單除暴的分為兩種型別。線性可分和非線性可分。可以使用乙個非常簡單的例子來解釋什麼是線性可分,什麼是線性不可分。a 線性可分的2類樣本 b 非線性可分的2類樣 已知乙個線性可分的資料集,其中x表示乙個n維向量,當...