歸一化是一種簡化計算的方式,即將有量綱的表示式,經過變換,化為無量綱的表示式,成為純量。歸一化是為了加快訓練網路的收斂性,可以不進行歸一化處理
歸一化的具體作用是歸納統一樣本的統計分布性。歸一化在0-1之間是統計的概率分布,歸一化在-1--+1之間是統計的座標分布。歸一化有同
一、統一和合一的意思。無論是為了建模還是為了計算,首先基本度量單位要同一,神經網路是以樣本在事件中的統計分別機率來進行訓練(概率計算)和**的,歸一化是同一在0-1之間的統計概率布;svm是以降維後線性劃分距離來分類和**的,因此時空降維歸一化是統一在-1--+1之間的統計座標分布。當所有樣本的輸入訊號都為正值時,與第一隱含層神經元相連的權值只能同時增加或減小,從而導致學習速度很慢。為了避免出現這種情況,加快網路學習速度,可以對輸入訊號進行歸一化,使得所有樣本的輸入訊號其均值接近於0或與其均方差相比很小。
歸一化是因為sigmoid函式的取值是0到1之間的,網路最後乙個節點的輸出也是如此,所以經常要對樣本的輸出歸一化處理。所以這樣做分類的問題時用[0.9 0.1 0.1]就要比用要好。
但是歸一化處理並不總是合適的,根據輸出值的分布情況,標準化等其它統計變換方法有時可能更好。
主要是為了資料處理方便提出來的,把資料對映到0~1範圍之內處理,更加便捷快速,應該歸到數字訊號處理範疇之內。歸一化方法(normalization method)
1。把數變為(0,1)之間的小數 主要是為了資料處理方便提出來的,把資料對映到0~1範圍之內處理,更加便捷快速,應該歸到數字訊號處理範疇之內。
2 。把有量綱表示式變為無量綱表示式歸一化是一種簡化計算的方式,即將有量綱的表示式,經過變換,化為無量綱的表示式,成為純量。
比如,複數阻抗可以歸一化書寫:z = r + jωl = r(1 + jωl/r) ,複數部分變成了純數量了,沒有量綱。
標準化方法(normalization method)
資料的標準化是將資料按比例縮放,使之落入乙個小的特定區間。由於信用指標體系的各個指標度量單位是不同的,為了能夠將指標參與評價計算,需要對指標進行規範化處理,通過函式變換將其數值對映到某個數值區間。
資料預處理之歸一化
歸一化是一種簡化計算的方式,即將有量綱的表示式,經過變換,化為無量綱的表示式,成為純量。歸一化是為了加快訓練網路的收斂性,可以不進行歸一化處理 歸一化的具體作用是歸納統一樣本的統計分布性。歸一化在0 1之間是統計的概率分布,歸一化在 1 1之間是統計的座標分布。歸一化有同 一 統一和合一的意思。無論...
資料預處理 歸一化
歸一化是一種資料預處理方法,就是要把你需要處理的資料經過處理後 通過某種演算法 限制在你需要的一定範圍內,為了後面資料處理的方便,其次是保正程式執行時 收斂加快 歸一化的三種方法 1 線性函式轉換 表示式如下 y x minvalue maxvalue minvalue 說明 x y分別為轉換前 後...
資料預處理 歸一化
由於進行分類器或模型的建立與訓練時,輸入的資料範圍可能比較大,同時樣本中各資料可能量綱不一致,這樣的資料容易對模型訓練或分類器的構建結果產生影響,因此需要對其進行歸一化處理。那就是將該樣本 樣本集中第i行資料 歸一到範圍 0,1 之間。一種簡單而快速的標準歸一化處理演算法是線性轉換演算法,最為常見的...