學習演算法的同學,如果不知道計算乙個演算法的時間複雜度該如何計算,其實是一件很丟臉的事情。最近選修了高階演算法這門課,由於時間緊張,原本就想混過去算了,但是不料考試的時候有40%的題目是計算時間複雜度的,乾脆就好好的總結一下。
概念我也不講了,大家都清楚。關鍵講講怎麼計算比較實際一點。
求解演算法的時間複雜度的具體步驟是:
⑴ 找出演算法中的基本語句;
演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。
⑵ 計算基本語句的執行次數的數量級;
只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函式中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的係數。這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。
⑶ 用大ο記號表示演算法的時間效能。
將基本語句執行次數的數量級放入大ο記號中。
如果演算法中包含巢狀的迴圈,則基本語句通常是最內層的迴圈體,如果演算法中包含並列的迴圈,則將並列迴圈的時間複雜度相加。例如:
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
第乙個for迴圈的時間複雜度為ο(n),第二個for迴圈的時間複雜度為ο(n2),則整個演算法的時間複雜度為ο(n+n2)=ο(n2)。
常見的演算法時間複雜度由小到大依次為:
ο(1)<ο(log2n)<ο(n)<ο(nlog2n)<ο(n2)<ο(n3)<…<ο(2n)<ο(n!)
ο(1)表示基本語句的執行次數是乙個常數,一般來說,只要演算法中不存在迴圈語句,其時間複雜度就是ο(1)。ο(log2n)、ο(n)、ο(nlog2n)、ο(n2)和ο(n3)稱為多項式時間,而ο(2n)和ο(n!)稱為指數時間。計算機科學家普遍認為前者是有效演算法,把這類問題稱為p類問題,而把後者稱為np問題。
這只能基本的計算時間複雜度,具體的執行還會與硬體有關。
dfs時間複雜度 時間複雜度 空間複雜度
時間複雜度的數學證明方法相對比較複雜,通常在工程實際中,會分析就好。注意 只看最高複雜度的運算 int for for for for int遞迴如何分析時間複雜度?常數係數可以忽略,在分析時不用考慮,只要說以上術語即可。主定理 master throrem 上述第四種是歸併排序,所有排序演算法,最...
時間複雜度 空間複雜度
時間複雜度 在電腦科學中,演算法的時間複雜度是乙個函式,它定性描述了該演算法的執行時間。這是乙個關於代表演算法輸入值的字串 的長度的函式。時間複雜度常用大o符號 表述,不包括這個函式的低階項和首項係數。計算時間複雜度的方法 1 只保留高階項,低階項直接丟棄 2 係數不要 3 執行次數是常數是為o 1...
時間複雜度 空間複雜度
演算法複雜度分為時間複雜度和空間複雜度。其作用 時間複雜度是指執行演算法所需要的計算工作量 而空間複雜度是指執行這個演算法所需要的記憶體空間。一 時間複雜度 時間頻度 乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道...