hadoop集群中有三種作業排程演算法,分別為
fifo
,公平排程演算法和計算能力排程演算法
fifo比較簡單,
hadoop
中只有乙個作業佇列,被提交的作業按照先後順序在作業佇列中排隊,新來的作業插入到隊尾。乙個作業執行完後,總是從隊首取下乙個作業執行。這種排程策略的優點是簡單、易於實現,同時也減輕了
jobtracker
的負擔。但是它的缺點也是顯然的,它對所有的作業都一視同仁,沒有考慮到作業的緊迫程度,另外對小作業的執行不利。
這種策略在系統中配置了任務槽,乙個任務槽可以執行乙個task
任務,這些任務就是乙個大的作業被切分後的小作業。當乙個使用者提交多個作業時,每個作業可以分配到一定的任務槽以執行
task
任務(這裡的任務槽可以理解為可以執行乙個
map任務或
reduce
任務)。如果把整個
hadoop
集群作業排程跟作業系統的作業排程相比,第一種
fifo
就相當於作業系統中早期的單道批處理系統,系統中每個時刻只有一道作業在執行,而公平排程相當於多道批處理系統,它實現了同乙個時刻多道作業同時執行。由於
linux
是多使用者的,若有多個使用者同時提交多個作業會怎樣?在這種策略中給每個使用者分配乙個作業池,然後給每個作業池設定乙個最小共享槽個數,什麼是最小共享槽個數呢?先要理解乙個最小什麼意思,最小是指只要這個作業池需要,排程器應該確保能夠滿足這個作業池的最小任務槽數的需求,但是如何才能確保在它需要的時候就有空的任務槽,一種方法是固定分配一定數量的槽給作業池不動,這個數量至少是最小任務槽值,這樣只要在作業池需要的時候就分配給它就行了,但是這樣在這個作業池沒有用到這麼多工槽的時候會造成浪費,這種策略實際上是這樣做的,當作業池的需求沒有達到最小任務槽數時,名義上是自己的剩餘的任務槽會被分給其他有需要的作業池,當乙個作業池需要申請任務槽的時候若系統中沒有了,這時候不會去搶占別人的(也不知道搶誰的啊),只要當前乙個空的任務槽釋放會被立即分配給這個作業池。
在乙個使用者的作業池內,多個作業如何分配槽這個可以自行選擇了如fifo
。所以這種排程策略分為兩級:
第一級,在池間分配槽,在多使用者的情況下,每個使用者分配乙個作業池。
第二級,在作業池內,每個使用者可以使用不同的排程策略。
計算能力排程和公平排程有點類似,公平排程策略是以作業池為單位分配任務槽,而計算能力排程是以隊列為單位分配tasktracker
(集群中乙個節點),這種排程策略配置了多個佇列,每個佇列配置了最小額度的
tasktracker
數量,同公平排程策略類似,當乙個佇列有空閒的
tasktracker
時,排程器會將空閒的分配給其他的佇列,當有空閒的
tasktracker
時,由於這時候可能有多個佇列沒有得到最小額度的
tasktracker
而又在申請新的,空閒的
tasktracker
會被優先分配到最飢餓的佇列中去,如何衡量飢餓程度呢?可以通過計算佇列中正在執行的任務數與其分得的計算資源之間的比值是否最低來判斷的,越低說明飢餓程度越高。
計算能力排程策略是以佇列的方式組織作業的,所以乙個使用者的作業可能在多個佇列中,如果不對使用者做一定的限制,很可能出現在多個使用者之間出現嚴重不公平的現象。所以在選中新作業執行時候,還需要考慮作業所屬的使用者是否超過了資源的限制,如果超過,作業不會被選中。
對於在同乙個佇列中,這種策略使用的是基於優先順序的fifo
策略,但是不會搶占。
Hadoop集群作業排程演算法
hadoop集群中有三種作業排程演算法,分別為 fifo 公平排程演算法和計算能力排程演算法 fifo比較簡單,hadoop 中只有乙個作業佇列,被提交的作業按照先後順序在作業佇列中排隊,新來的作業插入到隊尾。乙個作業執行完後,總是從隊首取下乙個作業執行。這種排程策略的優點是簡單 易於實現,同時也減...
Hadoop集群作業排程演算法
1.簡介 分布式檔案系統在排程作業的時候可以通過引數來設定job作業排程。開門見山,常見的有三種,先進先出fifoscheduler,預設的排程演算法,先進先出的方式處理應用,只有乙個佇列可提交應用,沒有應用優先順序可以配置 公平排程器fairscheduler,多佇列的,多使用者共享資源.程式在執...
Hadoop作業排程器
隨著 mapreduce 的流行,其開源實現 hadoop 也變得越來越受推崇。在 hadoop 系統中,有乙個元件非常重要,那就是排程器。排程器是乙個可插拔的模組,使用者可以根據自己的實際應用要求設計排程器 1 排程器基本作用 hadoop排程器的基本作用就是根據節點資源 slot 使用情況和作業...