聚類演算法 K means

2021-07-02 06:44:19 字數 491 閱讀 3658

演算法接受引數 k ;然後將事先輸入的n個資料物件劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的物件相似度較高;而不同聚類中的物件相似度較小。聚類相似度是利用各聚類中物件的均值所獲得乙個「中心物件」(引力中心)來進行計算的。

k-means演算法是最為經典的基於劃分的聚類方法,是十大經典資料探勘演算法之一。k-means演算法的基本思想是:以空間中k個點為中心進行聚類,對最靠近他們的物件歸類。通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類結果。

假設要把樣本集分為c個類別,演算法描述如下:

(1)適當選擇c個類的初始中心;

(2)在第k次迭代中,對任意乙個樣本,求其到c個中心的距離,將該樣本歸到距離最短的中心所在的類;

(3)利用均值等方法更新該類的中心值;

(4)對於所有的c個聚類中心,如果利用(2)(3)的迭代法更新後,值保持不變,則迭代結束,否則繼續迭代。

該演算法的最大優勢在於簡潔和快速。演算法的關鍵在於初始中心的選擇和距離公式。

K Means聚類演算法

k means聚類演算法 intergret kmeans演算法的基本思想是初始隨機給定k個簇中心,按照最鄰近原則把待分類樣本點分到各個簇。然後按平均法重新計算各個簇的質心,從而確定新的簇心。一直迭代,直到簇心的移動距離小於某個給定的值。k means聚類演算法主要分為三個步驟 1 第一步是為待聚類...

k means聚類演算法

說到聚類,得跟分類區別開來,分類是按人為給定的標準將樣本歸到某個類別中去,在機器學習中多是監督學習,也就是訓練樣本要給標籤 正確的類別資訊 而聚類是在某種規則下自動將樣本歸類,在機器學習中是無監督學習,不需要提前給樣本打標籤。k means聚類演算法,就是在某種度量方式下,將樣本自動劃分到k個類別中...

K means聚類演算法

k means聚類演算法 k means 演算法以 k 為引數,把 n 個物件分成 k 個簇,使簇內具有較高的相似度,而簇間的相似度較低。其處理過程如下 1.隨機選擇k個點作為初始的聚類中心 2.對於剩下的點,根據其與聚類中心的距離,將其歸入最近的簇 3.對每個簇,計算所有點的均值作為新的聚類中心 ...