時間複雜度的計算

2021-06-29 16:49:50 字數 1607 閱讀 7925

演算法的時間複雜度

定義:如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t(n),它是n的某一函式 t(n)稱為這一演算法的「時間複雜性」。

當輸入量n逐漸加大時,時間複雜性的極限情形稱為演算法的「漸近時間複雜性」。

我們常用大o表示法表示時間複雜性,注意它是某乙個演算法的時間複雜性。大o表示只是說有上界,由定義如果f(n)=o(n),那顯然成立f(n)=o(n^2),它給你乙個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。

此外,乙個問題本身也有它的複雜性,如果某個演算法的複雜性到達了這個問題複雜性的下界,那就稱這樣的演算法是最佳演算法。

「大o記法」:在這種描述中使用的基本引數是 n,即問題例項的規模,把複雜性或執行時間表達為n的函式。這裡的「o」表示量級 (order),比如說「二分檢索是 o(logn)的」,也就是說它需要「通過logn量級的步驟去檢索乙個規模為n的陣列」記法 o ( f(n) )表示當 n增大時,執行時間至多將以正比於 f(n)的速度增長。

這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,乙個低附加代價的o(n2)演算法在n較小的情況下可能比乙個高附加代價的 o(nlogn)演算法執行得更快。當然,隨著n足夠大以後,具有較慢上公升函式的演算法必然工作得更快。 

o(1)

temp=i;i=j;j=temp;                     

以上三條單個語句的頻度均為1,該程式段的執行時間是乙個與問題規模n無關的常數。演算法的時間複雜度為常數階,記作t(n)=o(1)。如果演算法的執行時 間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是乙個較大的常數。此類演算法的時間複雜度是o(1)。 

o(n^2)

2.1. 交換i和j的內容

sum=0;                 (一次)

for(i=1;i<=n;i++)       (n次 )

for(j=1;j<=n;j++) (n^2次 )

sum++;       (n^2次 )

解:t(n)=2n^2+n+1 =o(n^2)

2.2.   

for (i=1;io(n)

2.3. 

a=0;

b=1;                      ①

for (i=1;i<=n;i++) ②

解: 語句1的頻度:2,        

語句2的頻度: n,        

語句3的頻度: n-1,        

語句4的頻度:n-1,    

語句5的頻度:n-1,                                  

t(n)=2+n+3(n-1)=4n-1=o(n).

o(log2n )

2.4. 

i=1;       ①

while (i<=n)

i=i*2; ②

解: 語句1的頻度是1,  

設語句2的頻度是f(n),   則:2^f(n)<=n;f(n)<=log2n    

取最大值f(n)= log2n,

t(n)=o(log2n )

o(n^3)

2.5. 

for(i=0;i

時間複雜度計算

定義 如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t n 它是n的某一函式 t n 稱為這一演算法的 時間複雜性 當輸入量n逐漸加大時,時間複雜性的極限情形稱為演算法的 漸近時間複雜性 我們常用大o表示法表示時間複雜性,注意它是某乙個演算法的時間複雜性。大o表示只是說有上界,由定義如...

時間複雜度計算

1,演算法複雜度是在 資料結構 這門課程的第一章裡出現的,因為它稍微涉及到一些數學問題,所以很多同學感覺很難,加上這個概念也不是那麼具體,更讓許多同學複習起來無從下手,下面我們就這個問題給各位考生進行分析。首先了解一下幾個概念。乙個是時間複雜度,乙個是漸近時間複雜度。前者是某個演算法的時間耗費,它是...

計算時間複雜度

求解演算法的時間複雜度的具體步驟是 找出演算法中的基本語句 演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。計算基本語句的執行次數的數量級 只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函式中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的係數。這樣能...