b-樹
是一種多路搜尋樹(並不是二叉的):
1.定義任意非葉子結點最多只有m個兒子;且m>2;
2.根結點的兒子數為[2, m];
3.除根結點以外的非葉子結點的兒子數為[m/2, m];
4.每個結點存放至少m/2-1(取上整)和至多m-1個關鍵字;(至少2個關鍵字)
5.非葉子結點的關鍵字個數=指向兒子的指標個數-1;
6.非葉子結點的關鍵字:k[1], k[2], …, k[m-1];且k[i] < k[i+1];
7.非葉子結點的指標:p[1], p[2], …, p[m];其中p[1]指向關鍵字小於k[1]的子樹,p[m]指向關鍵字大於k[m-1]的子樹,其它p[i]指向關鍵字屬於(k[i-1], k[i])的子樹;
8.所有葉子結點位於同一層;
如:(m=3)
b-樹的特性:
1.關鍵字集合分布在整顆樹中;
2.任何乙個關鍵字出現且只出現在乙個結點中;
3.搜尋有可能在非葉子結點結束;
4.其搜尋效能等價於在關鍵字全集內做一次二分查詢;
5.自動層次控制;
b+樹
b+樹是b-樹的變體,也是一種多路搜尋樹:
1.其定義基本與b-樹同,除了:
2.非葉子結點的子樹指標與關鍵字個數相同;
3.非葉子結點的子樹指標p[i],指向關鍵字值屬於[k[i], k[i+1])的子樹(b-樹是開區間);
5.為所有葉子結點增加乙個鏈指標;
6.所有關鍵字都在葉子結點出現;
如:(m=3)
b+的搜尋與b-樹也基本相同,區別是b+樹只有達到葉子結點才命中(b-樹可以在非葉子結點命中),其效能也等價於在關鍵字全集做一次二分查詢;
b+的特性:
1.所有關鍵字都出現在葉子結點的鍊錶中(稠密索引),且鍊錶中的關鍵字恰好是有序的;
2.不可能在非葉子結點命中;
3.非葉子結點相當於是葉子結點的索引(稀疏索引),葉子結點相當於是儲存(關鍵字)資料的資料層;
4.更適合檔案索引系統;
b*樹
是b+樹的變體,在b+樹的非根和非葉子結點再增加指向兄弟的指標;
b*樹定義了非葉子結點關鍵字個數至少為(2/3)*m,即塊的最低使用率為2/3(代替b+樹的1/2);
b+樹的**:當乙個結點滿時,分配乙個新的結點,並將原結點中1/2的資料複製到新結點,最後在父結點中增加新結點的指標;b+樹的**只影響原結點和父結點,而不會影響兄弟結點,所以它不需要指向兄弟的指標;
b*樹的**:當乙個結點滿時,如果它的下乙個兄弟結點未滿,那麼將一部分資料移到兄弟結點中,再在原結點插入關鍵字,最後修改父結點中兄弟結點的關鍵字(因為兄弟結點的關鍵字範圍改變了);如果兄弟也滿了,則在原結點與兄弟結點之間增加新結點,並各複製1/3的資料到新結點,最後在父結點增加新結點的指標;
所以,b*樹分配新結點的概率比b+樹要低,空間使用率更高;
小結
b-樹:多路搜尋樹,每個結點儲存m/2到m個關鍵字,非葉子結點儲存指向關鍵字範圍的子結點;
所有關鍵字在整顆樹中出現,且只出現一次,非葉子結點可以命中;
b+樹:在b-樹基礎上,為葉子結點增加鍊錶指標,所有關鍵字都在葉子結點中出現,非葉子結點作為葉子結點的索引;b+樹總是到葉子結點才命中;
b*樹:在b+樹基礎上,為非葉子結點也增加鍊錶指標,將結點的最低利用率從1/2提高到2/3
資料庫設計原理 B樹 B 樹 B 樹
b樹即二叉搜尋樹 1.所有非葉子結點至多擁有兩個兒子 left和right 2.所有結點儲存乙個關鍵字 3.非葉子結點的左指標指向小於其關鍵字的子樹,右指標指向大於其關鍵字的子樹 b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麼就命中 否則,如果查詢關鍵字比結點關鍵字小,就進入左兒...
b樹b 樹b 樹 資料庫之B 樹
資料庫索引就是使用b 樹和b 樹來實現的 為什麼要建立b 樹演算法?給出兩個常用的sql語句 根據某個值查詢資料 select from user where id 1234 根據區間值來查詢某些資料 select from user where id 1234and id 2345 考慮到效能方面...
B樹,B 樹,B 樹,B 樹
小彰的部落格 b樹 即二叉搜尋樹 1.所有非葉子結點至多擁有兩個兒子 left和right 2.所有結點儲存乙個關鍵字 3.非葉子結點的左指標指向小於其關鍵字的子樹,右指標指向大於其關鍵字的子樹 如 b樹的搜尋,從根結點開始,如果查詢的關鍵字與結點的關鍵字相等,那麼就命中 否則,如果查詢關鍵字比結點...