資料分析的方法有哪些?

2021-06-19 03:38:43 字數 1475 閱讀 4474

1、資料分析遵循的原則:

① 資料分析為了驗證假設的問題,提供必要的資料驗證;

② 資料分析為了挖掘更多的問題,並找到原因;

③ 不能為了做資料分析而做資料分析。

2、步驟: ① 

調查研究:收集、分析、挖掘資料 ② 

圖表分析:分析、挖掘的結果做成圖表

3、常用方法:

利用資料探勘進行資料分析常用的方法主要有分類、回歸分析、聚類、關聯規則、特徵、變化和偏差分析、web頁挖掘等, 它們分別從不同的角度對資料進行挖掘。

①分類。分類是找出資料庫中一組資料物件的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的資料項對映到某個給定的類別。它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢**等,如乙個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。

②回歸分析。回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生乙個將資料項對映到乙個實值**變數的函式,發現變數或屬性間的依賴關係,其主要研究問題包括資料序列的趨勢特徵、資料序列的**以及資料間的相關關係等。它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命週期分析、銷售趨勢**及有針對性的**活動等。

③聚類。聚類分析是把一組資料按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的資料間的相似性盡可能大,不同類別中的資料間的相似性盡可能小。它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢**、市場的細分等。

④關聯規則。關聯規則是描述資料庫中資料項之間所存在的關係的規則,即根據乙個事務中某些項的出現可匯出另一些項在同一事務中也出現,即隱藏在資料間的關聯或相互關係。在客戶關係管理中,通過對企業的客戶資料庫裡的大量資料進行挖掘,可以從大量的記錄中發現有趣的關聯關係,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙**等決策支援提供參考依據。

⑤特徵。特徵分析是從資料庫中的一組資料中提取出關於這些資料的特徵式,這些特徵式表達了該資料集的總體特徵。如營銷人員通過對客戶流失因素的特徵提取,可以得到導致客戶流失的一系列原因和主要特徵,利用這些特徵可以有效地預防客戶的流失。

⑥變化和偏差分析。偏差包括很大一類潛在有趣的知識,如分類中的反常例項,模式的例外,觀察結果對期望的偏差等,其目的是尋找觀察結果與參照量之間有意義的差別。在企業危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常資訊的發現、分析、識別、評價和預警等方面。

⑦web頁挖掘。隨著 internet的迅速發展及web 的全球普及, 使得web上的資訊量無比豐富,通過對web的挖掘,可以利用web 的海量資料進行分析,收集政治、經濟、政策、科技、金融、各種市場、競爭對手、供求資訊、客戶等有關的資訊,集中精力分析和處理那些對企業有重大或潛在重大影響的外部環境資訊和內部經營資訊,並根據分析結果找出企業管理過程中出現的各種問題和可能引起危機的先兆,對這些資訊進行分析和處理,以便識別、分析、評價和管理危機。

資料分析有哪些分類?

按資料分析面對的問題不同分類 戰略 運營 戰略分析 是為了解決公司戰略方向問題,回答要向 去的問題。此類分析通常比較巨集觀,需要分析者有大局觀 有戰略思維 所用的資料除了公司內部的資料,還需要競品資料 行業資料。戰略分析的方法 需要從競品及行業資料中發現行業發展趨勢及競品的戰略定位,同時結合公司內部...

資料分析的步驟有哪些?

資料分析 有極廣泛的應用範圍,這是乙個掃盲貼。典型的資料分析 可能包含以下三個步 資料分析過程實施 資料分析過程的主要活動由識別資訊需求 收集資料 分析資料 評價並改進資料分析的有效性組成。一 識別資訊需求 識別資訊需求是確保資料分析過程有效性的首要條件,可以為收集資料 分析資料提供清晰的目標。識別...

大資料分析技術與方法有哪些

大資料分析方法 1.視覺化分析 2.資料探勘演算法 3.性分析 4.語義引擎 5.資料質量和資料管理。大資料的技術 資料採集 etl工具負責將分布的 異構資料來源中的資料如關係資料 平面資料檔案等抽取到臨時中間層後進行清洗 轉換 整合,最後載入到資料倉儲或資料集市中,成為聯機分析處理 資料探勘的基礎...