分類: c
2010-01-08 00:53
2413人閱讀收藏
舉報 演算法資料結構
工作inic語言
1. 演算法複雜度分為 時間複雜度和空間複雜度。
作用: 時間複雜度是度量演算法執行的時間長短;而空間複雜度是度量演算法所需儲存空間的大小。
2. 一般情況下,演算法的基本操作重複執行的次數是模組n的某乙個函式f(n),因此,演算法的時間複雜度記做:t(n)=o(f(n))
分析:隨著模組n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間複雜度越低,演算法的效率越高。
3. 在計算時間複雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出t(n)的同數量級(它的同數量級有以下:1,log2n ,n ,nlog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若t(n)/f(n)求極限可得到一常數c,則時間複雜度t(n)=o(f(n))
例:演算法:
for(i=1;i<=n;++i)
}則有 t(n)= n的平方+n的三次方,根據上面括號裡的同數量級,我們可以確定 n的三次方 為t(n)的同數量級
則有f(n)= n的三次方,然後根據t(n)/f(n)求極限可得到常數c
則該演算法的 時間複雜度:t(n)=o(n的三次方)
***演算法複雜度的計算
演算法複雜度是在《資料結構》這門課程的第一章裡出現的,因為它稍微涉及到一些數學問題,所以很多同學感覺很難,加上這個概念也不是那麼具體,更讓許多同學學起來無從下手,下面我們就這個問題給各位考生進行分析。
首先了解一下幾個概念。乙個是時間複雜度,乙個是漸近時間複雜度。前者是某個演算法的時間耗費,它是該演算法所求解問題規模n的函式,而後者是指當問題規模趨向無窮大時,該演算法時間複雜度的數量級。
當我們評價乙個演算法的時間效能時,主要標準就是演算法的漸近時間複雜度,因此,在演算法分析時,往往對兩者不予區分,經常是將漸近時間複雜度t(n)=o(f(n))簡稱為時間複雜度,其中的f(n)一般是演算法中頻度最大的語句頻度。
此外,演算法中語句的頻度不僅與問題規模有關,還與輸入例項中各元素的取值相關。但是我們總是考慮在最壞的情況下的時間複雜度。以保證演算法的執行時間不會比它更長。
常見的時間複雜度,按數量級遞增排列依次為:常數階o(1)、對數階o(log2n)、線性階o(n)、線性對數階o(nlog2n)、平方階o(n^2)、立方階o(n^3)、k次方階o(n^k)、指數階o(2^n)。
下面我們通過例子加以說明,讓大家碰到問題時知道如何去解決。
1、設三個函式f,g,h分別為 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn
請判斷下列關係是否成立:
(1) f(n)=o(g(n))
(2) g(n)=o(f(n))
(3) h(n)=o(n^1.5)
(4) h(n)=o(nlgn)
這裡我們複習一下漸近時間複雜度的表示法t(n)=o(f(n)),這裡的"o"是數學符號,它的嚴格定義是"若t(n)和f(n)是定義在正整數集合上的 兩個函式,則t(n)=o(f(n))表示存在正的常數c和n0 ,使得當n≥n0時都滿足0≤t(n)≤c?f(n)。"用容易理解的話說就是這兩個函式當整型自變數n趨向於無窮大時,兩者的比值是乙個不等於0的常 數。這麼一來,就好計算了吧。
(1)成立。題中由於兩個函式的最高次項都是n^3,因此當n→∞時,兩個函式的比值是乙個常數,所以這個關係式是成立的。
(2)成立。與上同理。
(3)成立。與上同理。
(4)不成立。由於當n→∞時n^1.5比nlgn遞增的快,所以h(n)與nlgn的比值不是常數,故不成立。
2、設n為正整數,利用大"o"記號,將下列程式段的執行時間表示為n的函式。
(1) i=1; k=0
while(i1
while (x>=(y+1)*(y+1))
y++;
解答:t(n)=n1/2 ,t(n)=o(n1/2), 最壞的情況是y=0,那麼迴圈的次數是n1/2次,這是乙個按平方根階遞增的函式。
(3) x=91; y=100;
while(y>0)
if(x>100)
else x++;
解答: t(n)=o(1), 這個程式看起來有點嚇人,總共迴圈執行了1000次,但是我們看到n沒有? 沒。這段程式的執行是和n無關的,就算它再迴圈一萬年,我們也不管他,只是乙個常數階的函式。
規則:有如下複雜度關係
c < log2n < n < n * log2n < n^2 < n^3 < 2^n < 3^n < n!
其中c是乙個常量,如果乙個演算法的複雜度為c 、 log2n 、n 、 n*log2n ,那麼這個演算法時間效率比較高 ,如果是 2^n , 3^n ,n!,那麼稍微大一些的n就會令這個演算法不能動了,居於中間的幾個則差強人意。
我們常需要描述特定演算法相對於 n(輸入元素的個數 )需要做的工作量。在一組未排序的資料中檢索,所需的時間與 n成正比;如果是對排序資料用二分檢索,花費的時間正比於logn。排序時間可能正比於n^2或者nlogn。
我們希望能夠比較演算法的執行時間和空間要求,並使這種比較能與程式語言、編譯系統、機器結構、處理器的速度及系統的負載等複雜因素無關。
為了這個目的,人們提出了一種標準的記法,稱為「大o記法」.在這種描述中使用的基本引數是 n,即問題例項的規模,把複雜性或執行時間表達為n的函式 。這裡的「o」表示量級 (order),比如說「二分檢索是 o(logn)的」,也就是說它需要「通過logn量級的步驟去檢索乙個規模為n的陣列」記法o ( f(n) )表示當n增大時,執行時間至多將以正比於f(n)的速度增長。這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,乙個低附加代價的o(n2)演算法在n較小的情況下可能比乙個高附加代價的o(nlogn)演算法執行得更快。當然,隨著n足夠大以後,具有較慢上公升函式的演算法必然工作得更快。
temp=i;i=j;j=temp; 以上三條單個語句的頻度均為1,該程式段的執行時間是乙個與問題規模n無關的常數。
演算法的時間複雜度為常數階,記作t(n)=o(1)。如果演算法的執行時 間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是乙個較大的常數。此類演算法的時間複雜度是o(1)。
例 2.1. 交換i和j的內容
1) sum=0; (一次)
2) for(i=1;i<=n;i++) (n次 )
3) for(j=1;j<=n;j++) (n^2次 )
4) sum++; (n^2次 )
解:t(n)=2n^2+n+1 =o(n^2)
例 2.2.
for (i=1;i例 2.3.
a=0;b=1; ①
for (i=1;i<=n;i++) ②
...解:語句1的頻度:2, 語句2的頻度: n, 語句3的頻度: n-1, 語句4的頻度:n-1,
語句5的頻度:n-1, 則:t(n)=2+n+3(n-1)=4n-1=o(n).
例 2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解:語句1的頻度是1, 設語句2的頻度是f(n), 則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,則該程式的時間複雜度t(n)=o(log2n )
例 2.5.
for(i=0;i下面是一些常用的記法:
訪問陣列中的元素是常數時間操作,或說o(1)操作。乙個演算法如果能在每個步驟去掉一半資料元素,如二分檢索,通常它就取o(logn)時間。用strcmp比較兩個具有n個字元的串需要o(n)時間 。常規的矩陣乘演算法是o(n^3),因為算出每個元素都需要將n對元素相乘並加到一起,所有元素的個數是n^2。
指數時間演算法通常**於需要求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的演算法將是o(2n)的。指數演算法一般說來是太複雜了,除非n的值非常小,因為,在這個問題中增加乙個元素就導致執行時間加倍。不幸的是,確實有許多問題 (如著名 的「巡迴售貨員問題」),到目前為止找到的演算法都是指數的。如果我們真的遇到這種情況, 通常應該用尋找近似最佳結果的演算法替代之。
dfs時間複雜度 時間複雜度 空間複雜度
時間複雜度的數學證明方法相對比較複雜,通常在工程實際中,會分析就好。注意 只看最高複雜度的運算 int for for for for int遞迴如何分析時間複雜度?常數係數可以忽略,在分析時不用考慮,只要說以上術語即可。主定理 master throrem 上述第四種是歸併排序,所有排序演算法,最...
時間複雜度 空間複雜度
時間複雜度 在電腦科學中,演算法的時間複雜度是乙個函式,它定性描述了該演算法的執行時間。這是乙個關於代表演算法輸入值的字串 的長度的函式。時間複雜度常用大o符號 表述,不包括這個函式的低階項和首項係數。計算時間複雜度的方法 1 只保留高階項,低階項直接丟棄 2 係數不要 3 執行次數是常數是為o 1...
時間複雜度 空間複雜度
演算法複雜度分為時間複雜度和空間複雜度。其作用 時間複雜度是指執行演算法所需要的計算工作量 而空間複雜度是指執行這個演算法所需要的記憶體空間。一 時間複雜度 時間頻度 乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道...