#ifndef binarysearchtree_h#define binarysearchtree_h
#include using namespace std;
templateclass treenode
treenode(t value) // constructor
};template < typename t >
class binarysearchtree
;template < typename t >
binarysearchtree::binarysearchtree()
template < typename t >
binarysearchtree::binarysearchtree(t values,int arraysize)
}template int binarysearchtree::insert(t value)
else
else if (value > current->value)
else
else if(value > former->value)
} treesize++;
return 0;
}template treenode* binarysearchtree::search(t searchvalue)
else if(current->value > searchvalue)else
} if (find == 1)else
}template int binarysearchtree::deletenode(t value)
this->deletenode(delnode);
cout << "node "<< value <<" has been deleted."<< endl;
return 0;
}template int binarysearchtree::deletenode(treenode*delnode)else if(delnode->left !=null)else if(delnode->right !=null)
treenode*deletetargetchild = null;
if (deletetarget->left != null)else if (deletetarget->right != null)
if (deletetargetchild != null)
if (deletetarget->parent == null)else if ( deletetarget->parent->left == deletetarget)else
if (deletetarget != delnode)
treesize--;
return 0;
}template int binarysearchtree::successor(t value)
treenode*successornode = this->successor(position);
if ( successornode != null)
cout << value << " \'s successor is:" << successornode->value << endl;
else
cout << value << " has no successor" << endl;
return 0;
}template treenode* binarysearchtree::successor(treenode*target)
treenode* parentnode =target->parent;
while ( parentnode != null && parentnode->right == target)
return parentnode;
}template int binarysearchtree::predecessor(t value)
treenode*predecessornode = this->predecessor(position);
if ( predecessornode != null)
cout << value << " \'s predecessor is:" << predecessornode->value << endl;
else
cout << value << " has no predecessor" << endl;
return 0;
}template treenode* binarysearchtree::predecessor(treenode*target)
treenode* parentnode =target->parent;
while ( parentnode != null && parentnode->left == target)
return parentnode;
}template void binarysearchtree::maxvalue()
template treenode* binarysearchtree::maxvalue(treenode*target)
return target;
}template void binarysearchtree::minvalue()
template treenode* binarysearchtree::minvalue(treenode*target)
return target;
}template int binarysearchtree::getsize(t value)
template int binarysearchtree::getsize(treenode*target)
if (target->left == null && target->left == null)else
}template void binarysearchtree::inorder()
template void binarysearchtree::inorder(treenode*target)
template void binarysearchtree::inordernorrec()
template void binarysearchtree::inordernorrec(treenode*target)
else
}}template void binarysearchtree::output()
template void binarysearchtree::output(treenode*target,int totalspaces)
else
output(target->left,totalspaces+4);
}};#endif
二叉樹 二叉查詢樹
構建二叉樹,判斷是否為二叉查詢樹,遞迴先序遍歷,非遞迴中序遍歷 include include include include using namespace std 二叉樹結點 struct treenode 鍊錶結點 struct listnode struct tempnodetempnode...
二叉樹 二叉查詢樹
二叉樹 binary tree 一種樹型結構,每個節點最多擁有兩個節點。如下圖 幾種型別的二叉樹 1.full binary tree 每個節點的孩子數 是 0 或者 2.對高度沒有要求。如下圖 2.perfect binary tree 這個就是最完美的樹,顧名思義,所有葉子節點都有相同的深度,並...
樹(樹,二叉樹,二叉查詢樹)
1.定義 n n 0 個結點構成的有限集合。當n 0時,稱為空樹 2.對於任一棵非空樹 n 0 它具備以下性質 1 樹中有乙個稱為 根 root 的特殊結點,用 r 表示 2 其餘結點可分為m m 0 個互不相交的有限集t1,t2,其中每個集合本身又是一棵樹,稱為原來樹的子樹。3.樹的一些性質 1 ...