演算法複雜度是在《資料結構》這門課程的第一章裡出現的,因為它稍微涉及到一些數學問題,所以很多同學感覺很難,加上這個概念也不是那麼具體,更讓許多同學複習起來無從下手,下面我們就這個問題給各位考生進行分析。
首先了解一下幾個概念。乙個是時間複雜度,乙個是漸近時間複雜度。前者是某個演算法的時間耗費,它是該演算法所求解問題規模n的函式,而後者是指當問題規模趨向無窮大時,該演算法時間複雜度的數量級。
當我們評價乙個演算法的時間效能時,主要標準就是演算法的漸近時間複雜度,因此,在演算法分析時,往往對兩者不予區分,經常是將漸近時間複雜度t(n)=o(f(n))簡稱為時間複雜度,其中的f(n)一般是演算法中頻度最大的語句頻度。
此外,演算法中語句的頻度不僅與問題規模有關,還與輸入例項中各元素的取值相關。但是我們總是考慮在最壞的情況下的時間複雜度。以保證演算法的執行時間不會比它更長。
常見的時間複雜度,按數量級遞增排列依次為:常數階o(1)、對數階o(log2n)、線性階o(n)、線性對數階o(nlog2n)、平方階o(n^2)、立方階o(n^3)、k次方階o(n^k)、指數階o(2^n)。
下面我們通過例子加以說明,讓大家碰到問題時知道如何去解決。
1、設三個函式f,g,h分別為 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn
請判斷下列關係是否成立:
(1) f(n)=o(g(n))
(2) g(n)=o(f(n))
(3) h(n)=o(n^1.5)
(4) h(n)=o(nlgn)
這 裡我們複習一下漸近時間複雜度的表示法t(n)=o(f(n)),這裡的"o"是數學符號,它的嚴格定義是"若t(n)和f(n)是定義在正整數集合上的 兩個函式,則t(n)=o(f(n))表示存在正的常數c和n0 ,使得當n≥n0時都滿足0≤t(n)≤c?f(n)。"用容易理解的話說就是這兩個函式當整型自變數n趨向於無窮大時,兩者的比值是乙個不等於0的常 數。這麼一來,就好計算了吧。
◆ (1)成立。題中由於兩個函式的最高次項都是n^3,因此當n→∞時,兩個函式的比值是乙個常數,所以這個關係式是成立的。
◆ (2)成立。與上同理。
◆ (3)成立。與上同理。
◆ (4)不成立。由於當n→∞時n^1.5比nlgn遞增的快,所以h(n)與nlgn的比值不是常數,故不成立。
2、設n為正整數,利用大"o"記號,將下列程式段的執行時間表示為n的函式。
(1) i=1; k=0
while(i1
while (x>=(y+1)*(y+1))
y++;
解答:t(n)=n1/2 ,t(n)=o(n1/2), 最壞的情況是y=0,那麼迴圈的次數是n1/2次,這是乙個按平方根階遞增的函式。
(3) x=91; y=100;
while(y>0)
if(x>100)
else x++;
解答: t(n)=o(1), 這個程式看起來有點嚇人,總共迴圈執行了1000次,但是我們看到n沒有? 沒。這段程式的執行是和n無關的,就算它再迴圈一萬年,我們也不管他,只是乙個常數階的函式。
有如下複雜度關係
c < log2n < n < n * log2n < n^2 < n^3 < 2^n < 3^n < n!
其中c是乙個常量,如果乙個演算法的複雜度為c 、 log2n 、n 、 n*log2n ,那麼這個演算法時間效率比較高 ,如果是 2^n , 3^n ,n!,那麼稍微大一些的n就會令這個演算法不能動了,居於中間的幾個則差強人意。
dfs時間複雜度 時間複雜度 空間複雜度
時間複雜度的數學證明方法相對比較複雜,通常在工程實際中,會分析就好。注意 只看最高複雜度的運算 int for for for for int遞迴如何分析時間複雜度?常數係數可以忽略,在分析時不用考慮,只要說以上術語即可。主定理 master throrem 上述第四種是歸併排序,所有排序演算法,最...
時間複雜度 空間複雜度
時間複雜度 在電腦科學中,演算法的時間複雜度是乙個函式,它定性描述了該演算法的執行時間。這是乙個關於代表演算法輸入值的字串 的長度的函式。時間複雜度常用大o符號 表述,不包括這個函式的低階項和首項係數。計算時間複雜度的方法 1 只保留高階項,低階項直接丟棄 2 係數不要 3 執行次數是常數是為o 1...
時間複雜度 空間複雜度
演算法複雜度分為時間複雜度和空間複雜度。其作用 時間複雜度是指執行演算法所需要的計算工作量 而空間複雜度是指執行這個演算法所需要的記憶體空間。一 時間複雜度 時間頻度 乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道...