做好優化要懂得分詞

2021-05-22 00:10:19 字數 3951 閱讀 1826

什麼是中文分詞

眾所周知。而中文是以字為單位,英文是以詞為單位的詞和詞之間是靠空格隔開。句子中所有的字連起來才能描述乙個意思。例如,英文句子 i am a student 用中文則為:乙個學生 」 計算機可以很簡單通過空格知道 student 乙個單詞,但是不能很容易明白 「 學 」 生 」 兩個字合起來才表示乙個詞。把中文的漢字序列切分成有意義的詞,就是中文分詞,有些人也稱為切詞。乙個學生,分詞的結果是乙個 學生。

中文分詞和搜尋引擎

中文分詞到底對搜尋引擎有多大影響?對於搜尋引擎來說。因為在上百億的網頁中找到所有結果沒有太多的意義,最重要的並不是找到所有結果。沒有人能看得完,最重要的把最相關的結果排在最前面,這也稱為相關度排序。中文分詞的準確否,經常直接影響到對

前 20 條結果中有 14 條和服一點關係都沒有。第一頁就有以下錯誤: 總共結果 507, googl 上輸入 「 和服 」 搜尋所有中文簡體網頁。000 條。

通訊資訊報:瑞星以技術和服務開拓網路安全市場 」

使用純 html 通用資料管理和服務 - 開發者 - zdnet ...

陳慧琳《心口不一》化妝和服裝自己包辦 」

:: ***:中國境外領事維護和服務指南 ( 2003 年版 ) ...

產品和服務 」

等等。第一頁只有三篇是真正在講 「 和服 」 結果。

福建省晉江市恆和服裝****系獨資企業 」

關於商品和服務實行明碼標價的規定 」

青島東和服裝裝置 」

前 20 條結果都是和服相關的網頁。 總共結果為 26, 中搜上輸入 「 和服 」 搜尋網頁。917 條。

這次搜尋引擎結果中的錯誤。 googl 中文

中文分詞技術

中文分詞技術屬於自然語言處置技術範疇。人可以通過自己的知識來明白哪些是詞,對於一句話。哪些不是詞,但如何讓計算機也能理解?其處理過程就是分詞演算法。

現有的分詞演算法可分為三大類:基於字串匹配的分詞方法、基於理解的分詞方法和基於統計的分詞方法。

1 基於字串匹配的分詞方法 

這種方法又叫做機械分詞方法。若在詞典中找到某個字串,依照一定的戰略將待分析的漢字串乙個 「 充分大的機器詞典中的詞條進行配。則匹配成功(識別出乙個詞)依照掃瞄方向的不同,串匹配分詞方法可以分為正向匹配和逆向匹配;依照不同長度優先匹配的情況,可以分為最大(最長)匹配和最小(最短)匹配;依照是否詞性標註過程相結合,又可以分為單純分詞方法和分詞標註相結合的一體化方法。常用的幾種機械分詞方法如下:

1 正向最大匹配法(由左到右的方向)

2 逆向最大匹配法(由右到左的方向)

3 最少切分(使每一句中切出的詞數最小)

還可以將上述各種方法相互組合。可以將正向最大匹配方法和逆向最大匹配方法結合起來構成雙向匹配法。由於漢語單字成詞的特點,例如。正向最小匹配和逆向最小匹配一般很少使用。一般說來,逆向匹配的切分精度略高於正向匹配,遇到歧義現象也較少。統計結果標明,單純使用正向最大匹配的錯誤率為 1/169 單純使用逆向最大匹配的錯誤率為 1/245 但這種精度還遠遠不能滿足實際的需要。實際使用的分詞系統,都是把機械分詞作為一種初分手段,還需通過利用各種其它語言資訊來進一步提高切分的準確率。

對於機械分詞方法。這方面有專業的學術**,可以建立乙個一般的模型。這裡不做詳細論述。

2 基於理解的分詞方法 

這種分詞方法是通過讓計算機模擬人對句子的理解。利用句法資訊和語義資訊來處理歧義現象。通常包括三個部分:分詞子系統、句法語義子系統、總控部分。總控部分的協調下,達到識別詞的效果。其基本思想就是分詞的同時進行句法、語義分析。分詞子系統可以獲得有關詞、句子等的句法和語義資訊來對分詞歧義進行判斷,即它模擬了人對句子的理解過程。這種分詞方法需要使用大量的語言知識和資訊。由於漢語語言知識的籠統、複雜性,難以將各種語言資訊組織成機器可直接讀取的形式,因此目前基於理解的分詞系統還處在試驗階段。

3 基於統計的分詞方法 

從形式上看。因此在上下文中,詞是穩定的字的組合。相鄰的字同時出現的次數越多,就越有可能構成乙個詞。因此字字相鄰共現的頻率或概率能夠較好的反映成詞的可信度。可以對語料中相鄰共現的各個字的組合的頻度進行統計,計算它互現資訊。定義兩個字的互現資訊,計算兩個漢字 x y 相鄰共現概率。互現資訊體現了漢字之間結合關係的緊密水平。當緊密水平高於某乙個閾值時,便可認為此字組可能構成了乙個詞。這種方法只需對語料中的字組頻度進行統計,不需要切分詞典,因而又叫做無詞典分詞法或統計取詞方法。但這種方法也有一定的侷限性,會經常抽出一些共現頻度高、但並不是詞的常用字組,例如 「 這一 」 之一 」 有的許多的等,並且對常用詞的識別精度差,時空開銷大。實際應用的統計分詞系統都要使用一部基本的分詞詞典(常用詞詞典)進行串匹配分詞,同時使用統計方法識別一些新的詞,即將串頻統計和串匹配結合起來,既發揮匹配分詞切分速度快、效率高的特點,又利用了無詞典分詞結合上下文識別生詞、自動消除歧義的優點。

底哪種分詞演算法的準確度更高。不可能單獨依靠某一種演算法來實現,目前並無定論。對於任何乙個成熟的分詞系統來說。都需要綜合不同的演算法。筆者了解,海量科技的分詞演算法就採用 「 複方分詞法 」 所謂複方,相當於用中藥中的複方概念,即用不同的藥才綜合起來去醫治疾病,同樣,對於中文詞的識別,需要多種演算法來處理不同的問題。

分詞中的難題

有了幼稚的分詞演算法。讓計算機理解中文語言更是困難。中文分詞過程中,否就能容易的解決中文分詞的問題呢?事實遠非如此。中文是一種十分複雜的語言。有兩大難題一直沒有完全突破。

1 歧義識別 

歧義是指同樣的一句話。那麼這個短語就可以分成 「 外表的和 「 外表的這種稱為交叉歧義。像這種交叉歧義十分常見,可能有兩種或者更多的切分方法。例如:外表的因為 「 外表 」 和 「 面的都是詞。前面舉的和服 」 例子,其實就是因為交叉歧義引起的錯誤。化妝和服裝 」 可以分成 「 化妝 和服裝 」 或者 「 化妝 和服 裝 」 由於沒有人的知識去理解,計算機很難知道到底哪個方案正確。

交叉歧義相對組合歧義來說是還算比較容易處理。句子 「 這個門把手壞了中,組合歧義就必需根據整個句子來判斷了例如。把手 」 個詞,但在句子 「 請把手拿開 」 中,把手 」 就不是乙個詞;句子 「 將軍任命了一名中將 」 中,中將 」 個詞,但在句子 「 產量三年中將增長兩倍 」 中,中將 」 就不再是詞。這些詞計算機又如何去識別 ?

如果交叉歧義和組合歧義計算機都能解決的話。真歧義。真歧義意思是給出一句話,歧義中還有乙個難題。由人去判斷也不知道哪個應該是詞,哪個應該不是詞。例如:桌球拍賣完了可以切分成 「 桌球 球拍 賣 完 也可切分成 「 桌球 拍賣 完了如果沒有上下文其他句子,恐怕誰也不知道 「 拍賣 」 這裡算不算乙個詞。

2 新詞識別 

新詞。但又確實能稱為詞的那些詞。最典型的人名,專業術語稱為未登入詞。也就是那些在字典中都沒有收錄過。人可以很容易理解句子 「 王軍虎去廣州了中,王軍虎 」 個詞,因為是乙個人的名字,但要是讓計算機去識別就困難了如果把 「 王軍虎 」 做為乙個詞收錄到字典中去,全世界有那麼多名字,而且每時每刻都有新增的人名,收錄這些人名自身就是一項巨大的工程。即使這項工作可以完成,還是會存在問題,例如:句子 「 王軍虎頭虎腦的中,王軍虎 」 還能不能算詞?

新詞中除了人名以外。而且這些又正好是人們經常使用的詞,還有機構名、地名、產品名、商標名、簡稱、省略語等都是很難處理的問題。因此對於搜尋引擎來說,分詞系統中的新詞識別十分重要。目前新詞識別準確率已經成為評價乙個分詞系統好壞的重要標誌之一。

中文分詞的應用

目前在自然語言處置技術中。許多西文的處置方法中文不能直接採用,中文處置技術比西文處置技術要落後很大一段距離。就是因為中文必需有分詞這道工序。中文分詞是其他中文資訊處置的基礎,搜尋引擎只是中文分詞的乙個應用。其他比如機器 翻譯 mt 語音合成、自動分類、自動摘要、自動校對等等,都需要用到分詞。因為中文需要分詞,可能會影響一些研究,但同時也為一些企業帶來機會,因為國外的計算機處置技術要想進入中國市場,首先也是要解決中文分詞問題。中文研究方面,相比外國人來說,中國人有十分明顯的優勢。

個人經驗 懂得分享才能進步得更快

做為站長,都知道交流的好處,交流中也許能給自己的思想來個突破,也可以吸取到別人的經驗,還可以增強自己的理解 分析能力。但是很多站長都不喜歡分享,以為分享出去之後,變得越來越多的人知道了,那麼到時倒霉的是自己,也可能把自己拉入了困境,所以就選擇了封國鎖門。中國曾經一段的閉關鎖國,我想看過歷史書的朋友都...

男人要懂得 疼自己的女人

1 當你愛著乙個女孩子,一定要記得經常對她說 我愛你。不管已經說過多少次,不管是她第幾百次問你 你愛我嗎?當她對你說 我愛你 你都要很真誠地說 我也愛你,不是用其他話或者覺得多餘 2 如果你不愛她了,放了她。不要白白享受著她的照顧和溫柔,然後漫不經心地尋找著別的女孩,在找到之後才說我們分手吧,又或者...

mysql做好Limit優化

使用mysql時,往往需要指定返回幾行資料,此時可以使用limit關鍵字來實現這個需求。limit子句可以被用於強制select查詢語句返回指定的記錄數量。通常情況下,limit關鍵字可以接受乙個或者兩個數字引數。需要注意的是,這個引數必須是乙個整數常量。如果使用者給定兩個引數,則第乙個引數表示第乙...