超弦理論的出現背景
20世紀的
物理學有兩次大的革命:一次是
狹義相對論
和廣義相對論
,它幾乎是
愛因斯坦
一人完成的;另一次是
量子理論
的建立。經過人們的努力,量子理論與狹義相對論成功地結合成
量子場論
[1],這是迄今為止最為成功的理論。粒子物理的標準模型理論預言電子的磁矩是
1.001159652193個玻爾
磁子,實驗給出的數值是
1.001159652188
,兩者在誤差是完全一致的,精確度達
13位有效數值。廣義相對論也有長足的發展,在小至太陽系,大至整個宇宙範圍裡,實驗觀測與理論很好地符合。但在極端條件下,引出了時空奇異,顯示了理論自身的不完善。就我們現在的認識水平,量子場論和廣義相對論是相互不自洽的,因此量子場論和廣義相對論應該在乙個更大的理論框架裡統一起來。現在這一更大的理論框架已初顯端倪,它就是超弦理論。
超弦理論的定義
超弦理論屬於弦理論的一種,也指狹義的弦理論,是物理學家追求統一理論的最自然的結果。這裡的「超
」有超對稱性的意思。為了將玻色子(
bosons
)和費公尺子(
fermions
)統一,科學家預言了這種粒子,由於實驗條件的限制,人們很難找到這種能夠證明弦理論的粒子。超弦理論作為最為艱深的理論之一,吸引著很多理論研究者對它進行研究,如果真是理論預言的那樣,我們將有可能建立一種大統一理論,來描述我們的宇宙。
超弦理論的具體解釋
超弦理論是
物理學家
追求統一理論的最自然的結果。愛因斯坦建立相對論之後自然地想到要統一當時公知的兩種相互作用--
萬有引力
和電磁力
。他花費了後半生近
40年的主要精力去尋求和建立乙個統一理論,但沒有成功。現在回過頭來看歷史,愛因斯坦的失敗並不奇怪。實際上自然界還存在另外兩種相互作用力--弱力和強力。現在已經知道,自然界中總共
4種相互作用力除萬有引力之外的
3種都可有量子理論來描述,電磁、弱和強相互作用力的形成是用假設相互交換「量子
」來解釋的。但是,引力的形成完全是另一回事,愛因斯坦的廣義相對論是用物質影響空間的幾何性質來解釋引力的。在這一影象中,瀰漫在空間中的物質使空間彎曲了,而彎曲的空間決定
粒子的運動。人們也可以模仿解釋電磁力的方法來解釋引力,這時物質交換的「量子
」稱為引力子,但這一嘗試卻遇到了原則上的困難--量子化後的廣義相對論是不可重整的,因此,量子化和廣義相對論是相互不自洽的。
超弦理論是人們拋棄了基本粒子是點粒子的假設而代之以基本粒子是一維弦的假設而建立起來的自洽的理論,自然界中的各種不同粒子都是一維弦的不同振動模式。與以往量子場論和規範理論不同的是,超弦理論要求引力存在,也要求規範原理和超對稱。毫無疑問,將引力和其他由規範場引起的相互作用力自然地統一起來是超弦理論最吸引人的特點之一。因此,從
1984
年底開始,當人們認識到超弦理論可以給出乙個包容標準模型的統一理論之後,一大批才華橫溢的年輕人自然地投身到超弦理論的研究中去了。
經過人們的研究發現,在
十維空間
中,實際上有
5種自洽的超弦理論,它們分別是兩個
iia和
iib,乙個規範為
apin(32)/z2
的雜化弦理論,乙個規範群為
e8×e8
的雜化弦理論和乙個規範為so(
32)的
i型弦理論。對乙個統一理論來說,
5種可能性還是稍嫌多了一些。因此,過去一直有一些從更一般的理論匯出這些超弦理論的嘗試,但直到
1995
年人們才得到乙個比較完美的關於這
5種超弦理論統一的影象。
這一影象可以有用上圖來表示。存在乙個唯一的理論,姑且稱其為
m理論。
m理論有乙個很大的模空間(各種可能的真空構成的空間)。
5種已知的超弦理論和十一維超引力都是
m理論的某些極限區域或是模空間的邊界點(圖中的尖點)。有關超弦對偶性的研究告訴我們,沒有模空間中的哪一區域是有別於其他區域而顯得更為重要和基本的,每一區域都僅僅是能較好地描述
m理論的一部分性質。但是,在將這些不同的描述自洽地柔合起來的過程中我閃也學到了對偶性和
m理論的許多奇妙性質,尤其是各種
d-膜相互轉換的性質。
在此我們不得不提到超弦理論成功地解釋了黑洞的
熵和輻射,這是第一次從微觀理論出發,利用統計物理和量子力學的基本原理,嚴格了匯出了巨集觀物體黑洞的熵和輻射公式,毫無疑問地確立了超弦理論是乙個關於引力和其他相互作用力的正確理論。將5
種超弦理論和十一維超引力統一到
m理論無疑是成功的,但同是也向人們提出了更大的挑戰。
m理論在提出時並沒有乙個嚴格的數學表述,因此尋找m理論
的數學表述和仔細研究
m理論的性質就成了這一時期理論物理研究熱點。
道格拉斯
(douglas,mr
)等人仔細研究了
d-膜的性質,發現了在極短距離下,
d-膜間的相互作用可以完全由規範理論來描述,這些相互作用也包括引力相互作用。因此,極短距離下的引力相互作用實際上是規範理論的量子效應。基於這些結果,班克(
banks,t
)等人提出了用零維
d-膜(也稱點
d-膜)作為基本自由度的
m理論的一種基本表述--矩陣理論。
矩陣理論是
m理論的非微擾的拉氏量表述,這一表述要求選取光錐座標系和真空背景至少有
6個漸近平坦的方向。利用這一表述已經證明了許多偶性猜測,得到了一類新的沒有引力相互作用的具有洛侖茲不變的理論。如果我們將注意力放在能量為
1/n量級的態(
n為矩陣的行數或列數),在
n趨於無窮大的極限下,可以匯出一類通常的規範場理論。許多跡象表明,在大
n極限下,理論將變得更簡單,許多有限
n下的自由度將不與物理的自由度耦合,因而可以完全忽略。所有這些結論都是在光錐座標系和有限
n下得到的,可以預期乙個明顯洛侖茲不變的表述將是研究上述問題極有力的工具。具體來說,人們期望在如下問題的研究上取得進展:(1
)全同粒子的統計規範對稱性應從乙個更大的連續的規範對稱性匯出。(2
)時空的存在應與超對稱理論中
玻色子和
費公尺子貢獻相消相關聯。(3
)當我們緊緻化更多維數時,理論中將出現更多的自由度,如何從量子場論的觀點理解這一奇怪的性質?(4
)有效引力理論的短距離(紫外)發散實際上是某些略去的自由度的紅外發散,這些自由度對應於延伸在兩粒子間的一維
d-膜,從場論的觀點來看,這些自由度的性質是非常奇怪的。(5
)將m理論與宇宙學聯絡起來。
顯然,沒有太多的理由認為矩陣理論是
m理論的乙個完美的表述。值得注意的是矩陣理論的確給出了許多有意義的結果,因此也必定有其物理上合理的成分,這很像本世紀初量子力學完全建立前的時期(那時,
蒲朗克提出能量量子匯出
黑體輻射公式,玻爾提出軌道量子化給出氫原子
光譜),一些有關乙個全新理論的跡象和物理內涵已經被人們發現了。但是,我們離真正建立乙個完美自洽
m理論還相距甚遠,因此有必要從超弦理論出發更多更深地發掘其內涵。在這方面,超弦理論的研究又有了新的突破。
1997
年底,馬爾達塞納(
maldacena
)基於d
-膜的近視界幾何的研究發現,緊化在
ads5×s5
上的iib
型超弦理論與大
n su(n
)超對稱規範理論是對偶的,有望解決強耦合規範場論方面一些基本問題如
夸克禁閉
和手徵對稱破缺。早在
70年代,特胡夫特(
´t hooft
)就提出:在大
n情況下,規範場論中的平面費曼圖將給出主要貢獻,從這一結論出發,波利考夫(
polyakov
)早就猜測大
n規範場論可以用(非臨界)弦理論來描述,現在馬爾塞納的發現將理論和規範理論更加具體化了。
1968
年維內齊諾(
veneziano
)為了解決相互作用而提出了弦理論,發現弦理論是乙個可以用來統一四種相互作用力的統一理論,對偶性的研究引出了
m理論,現在馬爾達塞納的研究又將
m理論和超弦理論與規範理論(可以用來描敘強相互作用)聯絡起來,從某種意義上來說,我們又回到了強相互作用的這一點,顯然我們對強相互作用的認識有了極大的提高,但是我們仍沒有完全解決強相互作用的問題,也沒有解決四種相互作用力的統一問題,因此對
m理論、超弦理論和規範理論的研究仍是乙個長期和非常困難的問題。超弦理論認為,在每乙個基本粒子內部,都有一根細細的線在振動,就像琴弦的振動一樣,因此這根細細的線就被科學家形象地稱為「弦
」。我們知道,不同的琴弦振動的模式不同,因此振動產生的音調也不同。類似的道理,粒子內部的弦也有不同的振動模式,不過這種弦的振動不是產生音調,而是產生乙個個粒子。換言之,每個基本粒子是由一根弦組成。
超弦理論認為,粒子並不存在,存在的只是弦在空間運動;各種不同的粒子只不過是弦的不同振動模式而已。自然界中所發生的一切相互作用,所有的物質和能量,都可以用弦的**和結合來解釋。
弦的運動是非常複雜,以至於三維空間已經無法容納它的運動軌跡,必須有高達十維的空間才能滿足它的運動,就像人的運動複雜到無法在二維平面中完成,而必須在三維空間中完成一樣。
閘道器知多少
閘道器 gateway 顧名思義,就是乙個網路到另乙個網路的關口。維基百科對閘道器的定義為 在計算機網路中,閘道器 gateway 是 其他伺服器通訊資料的伺服器,接收從客戶端傳送來的請求時,它就像自己擁有資源的源伺服器一樣對請求進行處理。但是,很多時候,我們會將路由器和閘道器認為是同乙個概念。其實...
原型知多少
除了undefind,number,string,boolean是簡單的值型別,其他的null,object,function都是物件 函式有prototype屬性,它是物件,是函式屬性和方法的集合 每個物件都有乙個 proto 屬性 隱式原型 它指向建立這個物件的函式的原型 函式也是一種物件 ob...
遍歷知多少
語法 for var arr 1,2,3 for var i 0 i arr.length i for.of.for var i of arr for.in.for var i in arr foreach arr.foreach item,index,arr map arr.map value,i...